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Abstract

Northern peatland ecosystems represent large carbon stocks that are susceptible to
changes such as accelerated mineralization due to water table lowering expected un-
der a climate change scenario. During the growing seasons of 2011 and 2012 we mon-
itored CO2 fluxes and plant biomass along a microtopographic gradient (hummocks-5

hollows) in an undisturbed dry continental boreal treed bog (control) and a nearby
site that was drained (drained) in 2001. Ten years of drainage in the bog significantly
increased coverage of shrubs at hummocks and lichens at hollows. Considering mea-
sured hummock coverage and including tree incremental growth, we estimate that the
control site was a larger sink in 2011 of −40 than that of −13 g C m−2 in 2012 while10

the drained site was a source of 144 and 140 g C m−2 over the same years. We in-
fer that, drainage induced changes in vegetation growth led to increased biomass to
counteract a portion of soil carbon losses. These results suggest that spatial variability
(microtopography) and changes in vegetation community in boreal peatlands will affect
how these ecosystems respond to lowered water table potentially induced by climate15

change.

1 Introduction

Northern peatlands, functioning as carbon (C) sink ecosystems of the boreal forest over
millennia, have stored approximately one third of global soil carbon (Tarnocai, 2006;
Tarnocai et al., 2009; Turunen et al., 2002). These peatlands dominate the Canadian20

and Albertan landscape with coverage of 12 % and 16.3 % respectively and contain
almost twice as much C per unit area (115 kg m−2) as tropical forests (Carlson et al.,
2010; Vitt et al., 2009). Bogs in Western Canada (e.g. Alberta) are often covered by
trees in contrast to open bogs in Eastern Canada (Turetsky et al., 2002). In Canada, the
large peatland coverage (1.136 million km2) combined with high carbon density results25

in a store of approximately 147 Gt of soil organic C (Tarnocai, 2006). The large C pools
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formed as a result of net uptake of carbon dioxide (CO2) from the atmosphere over
millennia, if destabilized through a change in climate (e.g. atmospheric warming and
subsequent drought), would lead to accelerated emission of greenhouse gases (GHGs)
to the atmosphere (Gruber et al., 2004; IPCC, 2007; Limpens et al., 2008).

The formation and stability of peatland C stock is sensitive to changes in climatic5

conditions (e.g. atmospheric temperature and precipitation) (Vitt et al., 2009). Ongo-
ing climate change is predicted to be most severe at northern latitudes where most
of the peatlands are situated (Tarnocai, 2006; IPCC, 2007). The Canadian Global Cli-
mate Model (CGCM1, 2000) predicted 3–4 ◦C increase in mean annual air temperature
by 2020, with the greatest potential temperature increase (>20 ◦C) occurring in winter10

months under extreme climate warming scenarios (Hengeveld, 2000). The increase of
air temperature, combined with altered precipitation patterns, could lead to overall de-
crease in soil moisture across the high latitude region (IPCC, 2007). Drought/warming
induced water table drawdown could have a significant impact on the sustainability and
ecosystem functions of boreal peatlands (Tarnocai, 2006; Adkinson et al., 2011; Blo-15

dau and Siems, 2012; Chivers et al., 2009; Ise et al., 2008; Riutta, 2008; Robroek et
al., 2009; Roulet, 2000; Waddington and Price, 2000; Limpens et al., 2008). The in-
creased atmospheric temperature and lowered water table can cause enhanced rates
of organic matter decomposition and CO2 emission, consequently resulting in the grad-
ual depletion of peat C pool (Turetsky and Louis, 2006).20

Carbon fluxes in peatlands occur in the forms of the uptake of C from the atmosphere
via gross ecosystem photosynthesis (GEP) and the release of C to the atmosphere by
plant (autotrophic) respiration and respiration by heterotrophic microorganisms (Rtot).
The sum of GEP and Rtot is defined as the net ecosystem exchange (NEE) of CO2.
Net uptake of CO2 causes the accumulation of carbon in the form of plant biomass and25

soil organic matter.
Photosynthesis and autotrophic respiration may vary independently with changing

temperature (Ryan, 1995; Ow et al., 2008). Warm and dry conditions in peatlands can
either stimulate CO2 uptake by enhanced GEP (e.g. Moore and Dalva, 1993; Upde-
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graff et al., 2001; Syed et al., 2006; Ise et al., 2008; Cai et al., 2010) or reduce C
uptake by limiting moisture (Alm et al., 1999; Roulet et al., 2007; Ise et al., 2008).
Lowered water table in a treed bog increased black spruce productivity and fine root
biomass significantly in a Canadian (Lieffers and Rothwell, 1987) and a Finnish peat-
land (Heikurainen and Pakarinen, 1982). Cool temperatures and near surface water5

table conditions which typically occur in northern peatland ecosystems suppress respi-
ration (Gorham, 1991; Hanson et al., 2000; Davidson and Janssens, 2006; Chapman
and Thurlow, 1998). Predicted warming and subsequent lowered water table will result
in enhanced CO2 emissions from northern peatland soils (Moore, 2002; Roulet et al.,
1992) where fine tree root biomass may contribute to soil total respiration (Lieffers and10

Rothwell, 1987). However, while the variation in respiration may not always be linked
to fluctuation in water table, it is related to changes in moisture. Thus water table is an
important control on respiration in peatlands in which soil peat moisture is sensitive to
lowering of water table (Parmentier et al., 2009). Therefore, depending on the balance
of GEP and Rtot changes as a consequence of warming and/or drought, there may be15

a net increase or decrease in thickness of peat (Moore et al., 2006).
Autotrophic respiration by tree/shrub roots may contribute a significant amount to

Rtot when lowered water table stimulates root growth and promotes overall shrub/tree
growth in dried peatlands (Lohila et al., 2011). Separating tree root respiration (Rr)
from Rtot is critical in order to attribute the C losses to various sources of soil respira-20

tion and to better understand C source/sink dynamics (Hanson et al., 2000; Valentini
et al., 2000; Janssens et al., 2001) of boreal treed peatlands in the face of global cli-
mate change. Isolating Rr from Rtot can make possible the comparison of CO2 fluxes
and plant biomass of a treed bog with those of an open bog provided all controlling
variables are similar. The contribution of Rr to Rtot has been quantified using closed25

chamber technique in various forest ecosystems. Hermle et al. (2010) separated black
spruce root respiration from soil total respiration by measuring the difference between
control and trenched plots. They found that the Rr was 24 % of the soil total respiration.
The contribution of Rr to soil total respiration was higher (37 %) in a subtropical forest
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(Wang et al., 2008) in a similar trenching experiment. An even higher contribution of
rhizomicrobial respiration was quantified by Hanson et al. (2000) in forest vegetation in
Florida.

As peatlands become drier under warming climate, it has been suggested that veg-
etation communities could shift towards a shrub/tree dominated system (Weltzin et al.,5

2000; Camill, 1999; Lohila et al., 2011), which in turn can alter the above (Lohila et al.,
2011) and belowground C dynamics (Blodau and Siems, 2012).

The shift in vegetation coverage and C dynamics vary with microtopographic features
(e.g. hummocks (H) and hollows (W)) in peatlands (e.g. Strack et al., 2006, Waddington
and Roulet, 2000). Also, the relationships between peatland CO2 fluxes and water table10

may vary spatially between different microtopographic features in peatlands (Charman
and Chichester, 2002; Joosten and Clarke, 2002). For example Strack et al. (2006)
reported reduced GEP at hummocks and enhanced GEP at hollows and lawns in a
water table drawdown experiment in an open poor fen peatland. Bubier et al. (2003)
reported a significant increase in respiration at a bog hollow during a dry summer and15

no change in the rate of respiration at the hummock.
Drought response experiments have been conducted in Eastern Canada: for exam-

ple, Strack et al. (2006) and Whittington and Price (2006) where most of the peatlands
generally receive high precipitation, have high surface humidity and are characterized
by their open nature often lacking tree cover. Climatic and environmental (temperature,20

precipitation and water table position) response experiments have been conducted in
Western Canada (Adkinson et al., 2011; Syed et al., 2006) where in contrast to Eastern
Canada, most of the peatlands are generally drier and warmer and are characterized
by their tree cover (Vitt et al., 1998; Price, 2010). However, these are short-term re-
sponses to drought studies and differences in microtopographic response were not25

considered. Therefore, the Western Canadian continental treed bogs are expected to
respond to predicted climate change differently for CO2 fluxes and plant biomass than
those of Eastern Canadian open peatlands with the potential for vegetation succession
when water tables are persistently lowered. Moreover, we are unaware of any drought
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response CO2 flux and biomass change experiments in treed peatland that has mea-
sured contribution of Rr to Rtot using the closed chamber technique.

Therefore, our research aimed: (1) to compare CO2 fluxes along a microtopographic
gradient (hummock vs. hollow) between a natural (control) and a drained bog, (2) to
quantify changes in tree biomass and ground layer biomass along microtopographic5

gradient in response to drainage, and (3) to determine the contribution of tree root
respiration to soil total respiration as affected by drainage.

2 Methods

2.1 Study sites

Two sections of a dry continental ombrotrophic bog were selected: one undisturbed10

section (CONTROL) (55.21◦ N, 112.31◦ W) and one section that was drained in 2001
(DRAINED) (55.16◦ N, 112.28◦ W). The two sections were approximately 8 km apart
and located in north central Alberta, approximately 100 km northeast of Athabasca,
Alberta, Canada. Both sites are underlain by sandy clay substrate and have peat depth
exceeding 4 m. Climate in this region is sub-humid continental with mean annual and15

growing season (May to October) temperatures at 2.1◦ C and 11.7◦ C (Environment
Canada, 2013). Mean annual precipitation at Athabasca is 504 mm, with 382 mm falling
as rain. The research was conducted over two growing seasons (2011–2012). Mean
growing season rainfall and air temperatures measured on site were 402.7 mm and
281.6 mm and 13.06 ◦C and 13.08 ◦ C for 2011 and 2012, respectively.20

These bogs are classified as treed low shrub bogs with typical mosaic of hummock
and hollow microforms (Riley, 2003). The hummocks and hollows at the control site
are dominated by Sphagnum mosses with sparse shrubs. The drained site has higher
coverage of shrubs on the hummocks and higher lichen coverage in the hollows. Com-
mon mosses include Sphagnum fuscum, Sphagnum magellanicum, Sphagnum capil-25

lifolium and Pleurozium schreberi while common shrubs include Labrador Tea (Ledum
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groenlandicum), Lingonberry (Vaccinum vitis-idaea), small bog cranberry (Oxycoccos
microcarpus) and cloudberry (Rubus chamaemorus). Black spruce (Picea mariana) is
the most common tree in these bogs.

2.2 CO2 exchange

At each site, three hummocks and three hollows were chosen as the study plots. A5

60×60 cm steel collar was permanently installed in each plot. The CO2 fluxes were
measured weekly during the growing seasons using a closed chamber having dimen-
sions of 60×60×30 cm (L×D×H), made of clear acrylic glass and corrected for trans-
mittance (88 %). Two small battery operated fans were installed inside the chamber to
circulate the air and achieve equilibrium CO2 concentration between measurements.10

The instantaneous CO2 concentration in the chamber was monitored with a portable
infrared gas analyser (PP systems, USA, EGM-4). Photosynthetically active radiation
(PAR) was measured with a quantum sensor (PP systems, USA) placed at the top of
the chamber. The temperature inside the chamber was measured with a thermocouple
thermometer (VWR Int., USA). All measurements were made at 15 s intervals for up to15

1.75 min. At the time of flux measurements, soil temperatures at the depths of 2, 5, 10,
15, 20 cm were measured with a thermocouple thermometer at all plots. Water table
relative to moss surface was measured from a permanently installed well associated
with each plot.

Net ecosystem CO2 exchange (NEE) was calculated using exponential change20

(Kutzbach et al., 2007) instead of linear change in CO2 concentration in the cham-
ber headspace with time, as a function of volume, air temperature and pressure inside
the chamber, according to ideal gas law. The exponential regression was used because
covering soil and/or vegetation essentially manipulates the spontaneous CO2 fluxes by
altering the concentration gradients between the soil, the vegetation and the air inside25

the chamber. Due to the constantly changing controls on CO2 flux within the chamber,
no linear decrease or increase of CO2 concentration inside the chamber can be ex-
pected. Kutzbach et al. (2007) found that the linear CO2 fluxes compared with exponen-
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tial fluxes were up to 40 % lower, over CO2 chamber closure time of only two minutes.
CO2 flux measurements in the dark when the chamber was covered with an opaque
tarp, represented Rtot. We recognize that this Rtot represents only understory above-
ground biomass respiration, heterotrophic soil respiration and tree root respiration and
ignores respiration of the overstory aboveground tree biomass. GEP was determined5

as the difference between NEE and Rtot. We used the convention that negative val-
ues indicate an uptake of CO2 by the ecosystem. Maximum rates of GEP (GEPmax)
and NEE (NEEmax) were calculated when PAR level was >1000 µmol m−2 s−1 following
Bubier et al. (2003).

2.2.1 Seasonal CO2 exchange model10

The growing season GEP was estimated using an empirical model following Riutta et
al. (2007) parameterized separately for each sampling plot for the seasons 2011 and
2012. The seasonal GEP was estimated by:

GEP =
PAR×Pmax

PAR+ k
×e

[
−0.5×

(WT−WTopt
WTtol

)2]
×e

[
−0.5×

( T−Topt
Ttol

)2]
(1)

where, Pmax denotes the potential maximum rate of GEP (g CO2 m−2 d−1) if water table15

and temperature are not limiting and the parameter k denotes the level of PAR at which
half of the GEPmax occurs. WT is the water table position (cm), WTopt and WTtol are
parameters in a Gaussian response of GEP to water table when GEP is optimized
and width of the curve respectively, T is the soil temperature (◦C) at 5 cm below moss
surface and Topt and Ttol are parameters in a Gaussian response of GEP to the soil20

temperature when GEP is optimized and width of the curve.
Model parameters for seasonal GEP, r2 values, standard errors (±) and standard

errors of the estimates at control and drained microforms are presented in Table 1.
Two-thirds of the data were used for model construction, whereas one-thirds of the
data were used for independent testing of the models following Tuittila et al. (2004).25
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The growing season Rtot was estimated using multiple linear regressions with soil
temperature at 5 cm depth and water table position by:

Rtot = a×T +b ×WT+ c (2)

where, a, b and c are regression coefficients (Table 2).
Seasonal GEP and Rtot were estimated based on Eqs. (1) and (2) for each twenty5

minute period between 1 May and 31 October, averaged daily and summed for a
growing season total based on measurements made on site for PAR (LI-190, LI-
COR, Nevada, USA), WT (Levelogger Junior, Solinst, USA) and temperature (Onset
HOBOware Pro, MA, USA). Growing season ground layer NEE was determined by
adding seasonal GEP to seasonal Rtot estimates.10

2.2.2 Model validation

The GEP and Rtot models were validated by correlating the measured data (not used
for model construction) and modeled values. Model validation showed excellent agree-
ment between predicted and measured values (Fig. 1a and b).

2.2.3 Tree root respiration15

To explain the contribution of tree root respiration (Rr) to total soil respiration (Rtot), a
trenching method (Wang et al., 2008) was used. A total of 32 plots (eight hummocks
and eight hollows at each site, (in addition to the CO2 flux plots) were chosen. At each
site, four hummocks and four hollows were trenched to 30 cm depth (approximately
the bottom of the root zone) around 60×60 cm plots in May 2012. The trenched plots20

were lined with a thick polyethylene sheet to prevent root ingrowths. The trenches were
backfilled in reverse order of removal while minimizing disturbances as much as pos-
sible. It was assumed that the trenching cut down most of the live root ingrowth. The
remaining four hummocks and four hollows were left intact to measure the difference
in CO2 emission between trenched (having minimal tree roots) and intact (with all tree25
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roots) plots. All plots were clipped every two weeks, using shears, to ensure that soil
surface was free of live mosses, shrubs and herbs during July to September 2012. The
CO2 emissions from all plots were measured using the same instruments and chamber
used for the measurement of GEP and Rtot. We had a methodological challenge that
while the trenching separates Rr from Rtot, it also adds fresh litter to the soil that can5

add to the existing heterotrophic soil respiration.
Trenching experiments have been performed to separate root autotrophic respira-

tion from Rtot (e.g. Hermle et al., 2010; Hanson et al., 2000; Wang et al., 2008; Díaz
Pinés et al., 2010; Kuzyakov, 2006; Brant et al., 2006). In all cases the assumption
has been made that the trenched roots die off within a short time and that afterwards10

the measured Rtot can solely be attributed to heterotrophic soil respiration. Trenching
immediately disrupts the supply of recent photosynthates to the roots and mycorrhiza.
The mycorrhizal fungi and associated bacteria will suffer from the lack of labile C. Bow-
den et al. (1993), Boone et al. (1998) and Rey et al. (2002) in trenching experiments
showed that C content of decomposing fine roots in trenched plots contribute little to Rr15

and become stable in the four months after trenching. Therefore, no correction for ex-
tra CO2 from decaying fine roots is necessary. However, the root exclusion experiment
may not be useful if extended through a complete annual cycle, as over such a long
period there is the possibility of reinvasion of roots into the previously root free trenched
plot (Edwards and Norby, 1999). While it is clear that findings from such trenching mea-20

surements should be interpreted carefully, the primary focus of this paper is to quantify
Rtot while investigating Rr to better understand the contribution of various processes to
shifts in Rtot following drainage.

2.3 Biomass and tree productivity

Aboveground biomass was measured by clipping 18 (9 H and 9 W), 25×25 cm25

quadrats at each of control and drained sites, in mid July 2011. The biomass was
clipped at the base of the capitulum at 1.0 cm below moss surface following Clymo
(1970) and Loisel et al. (2012). From the microforms at each site, soil cores of only
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20 cm depth were collected due to frozen peat beyond this depth. The soil cores were
sectioned into two depths (0–10 and 10–20 cm) and roots were sorted into coarse
(>2 mm) and fine (<2 mm) fractions. For tree biomass, we selected three 10×10 m
quadrats at each site. Trees were divided into tall (>137 cm height) and short (<137 cm
height) for biomass estimation. All trees were measured for their height, diameter at5

breast height (DBH, when tall enough) and basal diameter (DB). Tall tree biomass was
calculated by using an allometric equation from Grigal and Kernik (1984) while short
tree biomass was determined by using an allometric equation generated by regressing
height with oven-dried weight as (Dry biomass=0.0085 (tree height)2.2088, R2 = 0.93,
p <0.001).10

The incremental biomass growth of tall trees for 2011 and 2012 was calculated based
on tree ring widths using DendroScan (Varem-Sanders et al., 1996). The incremental
biomass of short trees for 2011 and 2012 was calculated by regressing leader length
with height following Mullin et al. (1992) and Macdonald and Lieffers (1990).

2.4 CO2-C balance calculations15

The C balance of the treed control and drained sites was calculated separately for
2011 and 2012. To calculate the seasonal C balance of the sites, two components of
the C budget were added: the seasonal CO2 fluxes of the ground-layer (understory,
aboveground and belowground) biomass and the incremental biomass growth of the
tree cover during the study years.20

The seasonal CO2 fluxes at hummocks and hollows were upscaled by multiplying
mean estimated growing season CO2 exchange by their respective coverage of 56
and 44 % and 52 and 48 % at the control and drained sites, respectively (Table 4).The
incremental growth of the tree cover was added to the ground-layer CO2 exchange
assuming that biomass had a carbon content of 50 %.25
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2.5 Statistical analysis

Differences in GEPmax, Rtot, NEEmax, and aboveground biomass between sites and
microforms were tested by two-way ANOVA, using Minitab 16.0 (Minitab Inc., PA, USA).
Differences in Rr between sites, microforms and trenched and intact plots were tested
for significance using a three-way ANOVA using SPSS 20.1. The nonlinear and linear5

regression models (Eqs. 1 and 2) were used to construct GEP and Rtot models (SPSS
20.1) and to estimate seasonal CO2 balance.

3 Results

3.1 Site conditions

Ten years after initial drainage, the water table at the drained site was as much as10

80 cm lower than that at the control site (Fig. 1). The growing seasons of 2011 and
2012 were warmer by 1.36 ◦C and 1.38 ◦C respectively, and wetter by 41.9 mm in 2011
and drier by 79.2 mm in 2012 than 30-yr average at Athabasca. The combination of
lower rainfall and higher temperature in 2012 led to a decrease in water level at control
and drained hollows by 4.5 and 4.3 cm and at control and drained hummocks by 8.015

and 7.2 cm respectively (Fig. 2).
The drained site was trenched around in 2001 and the data on pre-drawdown hy-

drology was not available. However, the control and premises of drained sites being
part of the same peatland complex and having similar vegetation layers, air tempera-
ture and peat depth are considered to be statistically similar before start of this study20

in 2001. As a result of 10 yr drainage, Sphagnum coverage at the drained site was
reduced significantly (F (3, 32)=33.40, p <0.001) compared to the control site, but no
significant difference in Sphagnum coverage was observed between microforms at ei-
ther site. Sphagnum at drained site was replaced by shrubs at hummocks and lichens
at hollows (field observation, data not presented here).25
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3.2 Biomass

Vascular plant biomass at the drained hummock was significantly higher than that at
the control hummock (F (1, 32)= 17.07, p <0.001) and there was a significant inter-
action between drainage and microform (F (1,32)=35.74, p <0.001), while there was
no difference between control and drained hollows (Table 3, Fig. 3). Conversely, moss5

biomass at drained hummocks was significantly lowest of all plots (F (1,32)=26.28,
p <0.001). In fact, moss biomass at the drained site was overall much lower than
those in the control site regardless of microform type, indicting a strong decline of
moss cover with drainage. Lichen biomass on the other hand showed an increase fol-
lowing drainage, but it was the drained hollow that had the highest lichen biomass10

(over 30 times higher than that in the control hollows) (F (1,32)=7.9, p =0.008) and
the interaction between drainage and microform was statistically significant. As a
whole, aboveground biomass was highest at drained hummocks (F (1,32)=14.24,
p = 0.003) while lowest at control hollows. Neither total belowground root biomass nor
tree biomass were significantly different between microforms and/or sites. However,15

total root biomass was higher in the drained site than that in the control (Table 3).
Although tree biomass was higher in the control site by 178 g m−2, yet the annual in-

crement during the study years (2011 and 2012) was significantly higher in the drained
site (66 and 60 g C m−2) than that in the control (38 and 33 g C m−2) (F (1, 3)=3025,
p = 0.012).20

3.3 CO2 fluxes

3.3.1 Measured CO2 fluxes

Drainage did not change GEPmax significantly both in 2011 and 2012 (Fig. 4; two-
way ANOVA, 2011; F = 0.06, p = 0.813, 2012; F = 4.13, p = 0.08). However, GEPmax
was significantly higher at hummocks than hollows (2011; F = 7.84, p <0.027, 2012;25

F = 8.99, p <0.017). Drainage had a significant interaction with microtopography in
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2012 leading to significantly different GEPmax at drained microforms. Drainage resulted
in significantly higher Rtot (2011; F = 6.85, p <0.037, 2012; F = 8.52, p <0.019), but re-
mained statistically similar between microforms at both sites in both years. The drained
hollows were the largest sources of CO2 emission largely due to the significantly higher
contribution of Rr (5.03 g CO2 m−2 d−1) to Rtot (18.02 g CO2 m−2 d−1) than that of the Rr5

contribution of 1.51 g CO2 m−2 d−1 to Rtot (11.84 g CO2 m−2 d−1) at control hollows (see
2012 in Fig. 3). NEEmax was positive in 2011 but became negative (net sink of CO2)
in 2012 at control microforms. Subtracting Rr from NEEmax switched the drained hum-
mocks to a moderate sink and the control microforms to larger sinks of CO2, while
considerably reduced emissions at the drained hollows (Fig. 4).10

3.3.2 Modeled CO2 fluxes

Based on empirical models (Eqs. 1 and 2), the ground layer at the control site was a
small sink of CO2 taking up an estimated 6.9 g CO2 m−2 largely due to the significantly
higher GEP at its hollows than that of its hummocks, whereas the ground layer at the
drained site was a substantial source of CO2 losing an estimated 770 g CO2 m−2 largely15

due to significantly higher Rtot at its hollows than that of its hummocks, during the 2011
growing season (Table 4). In 2012, a shift in the functions of hollows and hummocks at
the control site was noticed, where hummocks became a moderate sink of CO2, and
the hollows became a substantial source. However, the drained microforms and site
remained consistently sources of CO2 (Table 4).20

3.4 C balance

In the growing season of 2011, the ground-layer of control and drained sites were a
small sink (2 g C m−2) and substantial source (210 g C m−2), respectively. In the grow-
ing season of 2012, the control site became a moderate source (20 g C m−2) while the
drained site remained a substantial source (200 g C m−2). To calculate the final C bal-25

ance, we included estimated tree incremental growth during study years, and estimated
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that the control site was a larger sink of 40 g C m−2 in 2011 than that of 13 g C m−2 in
2012. However, the drained site remained a source through both study seasons, losing
144 g C m−2 in 2011 and 140 g C m−2 in 2012 growing season.

4 Discussion

Previous research has shown that warm and dry summer conditions can reduce net5

CO2 uptake in peatlands by enhancing respiration greater than productivity (Alm et al.,
1999; Arneth et al., 2002; Bubier et al., 2003; Aurela et al., 2007). Similarly, in our ex-
periment warmer and drier weather in 2012 reduced net uptake of CO2 and reduced
the growing season C sink at the control site. The shift was due to the substantially
increased Rtot at the hollows greater than that of combined increase in GEP at the mi-10

croforms (Table 4). The enhanced Rtot at hollows might be due to stressed vegetation
growth observed at the drier hollows (Fig. 2). In contrast there was a little change in
GEP or Rtot at the drained site in 2012 and thus no real change in net CO2 emission.
Similar to our findings on response of warmer and drier weather, Aurela et al. (2004)
and Lafleur and Humphreys (2008) also found increased GEP with warmer growing15

season temperature but reduced GEP and enhanced Rtot at extreme temperature in
a sub-arctic fen. Our findings together with others (e.g. Griffis et al., 2000; Bubier et
al., 2003; Aurela et al., 2007) demonstrate the important interaction between tempera-
ture and water availability for GEP and Rtot response, as either factor alone could not
determine the overall growth response of peatland vegetation under changing climatic20

conditions. Persistently deep water table at the drained site likely limited any response
to the short term drying in 2012 as this did little to further lower the water table.

Ten years of drainage in a dry continental boreal bog had a significant impact on
the plant community, plant biomass and carbon fluxes, and the responses of the peat-
land to drainage varied between microforms and over time. Drainage replaced mosses25

with shrubs at hummocks and lichens at hollows significantly such that the ground
layer aboveground biomass increased significantly (Fig. 3). The aboveground biomass
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appears to be within a range of previous reports for similar types of peatlands. Pub-
lished data for aboveground tree biomass across 20 bogs and ground layer shrubs
biomass across 16 bogs varied quite broadly with means of 2177 g m−2 (±2259 g m−2)
and 478 g m−2 (±224 g m−2) respectively (Moore et al., 2002). Our data for average to-
tal of the ground layer and aboveground tree biomass (3490±263 g m−2) fall within5

the range of the published values. The drainage induced increase in ground layer
biomass including aboveground and belowground biomass observed was also reported
by Moore et al. (2002). We could measure belowground biomass to only 20 cm depth
due to frozen lower layers of soil and therefore it is likely that we may have underesti-
mated the root biomass particularly at the drained site with large oxic zone. However,10

this still likely captured the majority of below ground biomass as Lieffers and Rothwell
(1987) found only 6 % of root biomass occurred below 20 cm deep in a drained bog.

Although aboveground tree biomass was slightly higher at control site due to denser
but smaller diameter trees, yet we found higher total biomass at the drained site due to
its significantly higher ground layer biomass than that at the control site. In both of the15

study years, the tree productivity was significantly higher at the drained site than that
at control. The higher belowground biomass supported with higher Rr at the drained
site, is a strong indication that lowered water table enhanced tree growth as concluded
by (Hanson et al., 2000), Hermle et al. (2010) and Lieffers and Rothwell (1987). Al-
though we briefly consider explaining the contribution of Rr to Rtot in our treed peatland20

study, our main aim was to quantify and include Rtot in seasonal model construction.
The drainage induced significantly higher coverage of vascular plants and ground layer
aboveground biomass offsets some of the loss of CO2 due to deeper oxic zone and
higher decomposition rates as the water table drops (Ise et al., 2008). However, our
carbon balance estimates suggest that drainage has led to a shift from CO2 sink to25

a substantial CO2 source as the drainage induced increase in Rtot (supported by Rr
in 2012) was substantially higher than that of increase in GEP in both study seasons
of 2011 and 2012. Similarly, Chivers et al. (2009) conducted a water table drawdown
response experiment in an Alaskan moderately rich treeless fen and found after two
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years of drainage similar to our finding that the drainage shifted the peatland from a
sink of CO2 to a source, although this change was much smaller than that of the change
observed in our study of effects of drainage after 10 yr.

Peatland microforms have been shown to have different rates of CO2 exchange and
respond differently to changes in environmental conditions. For example, Waddington5

and Roulet (2000) found significantly higher uptake of CO2 at a wetter microform (lawn)
than that at the drier one (ridge) in over two growing seasons. Strack et al. (2006)
studied CO2 exchange following water table drawdown along a microtopographic gra-
dient in a cool temperate poor fen and compared results to a natural microtopographic
gradient over two growing seasons. They also reported higher uptake of CO2 at the10

wetter microform (hollow). They found that drained hummocks had lower GEPmax than
drained hollows in contrast to control microforms and suggested that lower water ta-
bles would result in flattening of the peatland microtopography (i.e. hummocks shrink
while hollows accumulate peat). In contrast, in the present study in a dry continental
boreal treed bog we found that after a decade of drainage, the GEPmax was in fact15

the highest at drained hummocks in both growing seasons. The increase in GEPmax
at drained hummocks was probably due to enhanced growth and greater coverage
of shrubs. Conversely, replacement of Sphagnum by lichens at drained hollows (over
30 times higher biomass than at control hollows) probably led to the observed reduc-
tion in GEPmax (Table 4). Moreover, the drained hollows were the largest net source20

of CO2 in both years. Therefore we expect an increase in relative equilibrium peat
depth at the hummocks and decrease in equilibrium peat depth at the hollows as an
effect of drainage over the long run. These findings are not consistent with Strack et
al. (2006) and are likely due to contrasting climate conditions of the two studies. For
example, the earlier study was conducted in an open poor fen where average grow-25

ing season precipitation recorded during the two study years were 433 and 358 mm
in contrast to 402 and 281 mm recorded at our treed continental bog. Also the water
table in the earlier study was much shallower and linked to regional hydrology whereas
the much deeper water table in this study was controlled by the precipitation and the
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local elevation. On the other hand, these results together are consistent with a general
“humpbacked” relationship between peat accumulation and water table depth (e.g. Be-
lyea and Clymo 2001). Given the initially dry conditions at this continental bog, further
drying is expected to shift both hummocks and hollows to lower rates of peat accumu-
lation whereas a flattening of the curve at deep water tables would reduce this effect at5

already dry site (e.g. hummocks).
To sum up, the drained continental bog compared with a natural one simulated the

potential climate induced lowered water table and revealed spatial and temporal het-
erogeneity in CO2 fluxes and plant biomass in the treed peatland complex. Drainage
affected vegetation coverage, plant biomass and CO2 fluxes differently at the micro-10

forms after a decade. Significant replacement of mosses with shrubs at hummocks
and lichens at hollows increased ground layer aboveground biomass significantly at
the hummocks and generally at the hollows. This drainage induced change in vegeta-
tion coverage and biomass shifted the bog from a sink of CO2 to a source. Net emission
of CO2 can decelerate the rate of vertical growth of microform whereas net uptake of15

CO2 can accelerate the rate of vertical growth (Belyea, 2009). In this study we noticed
significant increase in net CO2 uptake at hummocks and net release at hollows as a re-
sult of 10 yr of drainage (Table 4) in contrast to previous studies in wetter climates. This
illustrates the importance of initial climatic conditions for predicting peatland response
(e.g. Hilbert et al., 2000). Continued low water tables could lead to further shifts in veg-20

etation in the future and thus a different C balance than determined following 10 yr of
water table drawdown.

5 Conclusions

Ten years of drainage in an ombrotrophic treed bog induced ecological succession:
mosses were replaced by shrubs at hummocks and lichens at hollows. The overall25

greater coverage of vascular plants and higher total biomass at the drained site in-
creased the uptake of CO2 but the loss via respiration was even higher due to peat
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oxidation and increased contribution of tree root respiration. The research strongly
suggests that the deepening of unsaturated zone affected C sequestration rates dif-
ferently at hummocks and hollows potentially resulting in steepened microtopographic
gradient over time. Overall, drainage promoted CO2 emissions but offset a portion of
these losses by increasing total biomass in a dry continental boreal treed bog.5
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Table 1. Parameters Estimates, SEE and Goodness of Fit (r2) for the Gross Ecosystem Photo-
synthesis Model (Eq. 1).

GEP vs. PAR GEP vs. WT GEP vs. T SEE r2

Pmax k WTopt WTtol Topt Ttol

(g CO2 m−2 d−1) (µmol m−2 s−1) (cm) (cm) (◦C) (◦C) (g CO2 m−2d−1)

Control Hummock −28.90±12.2 831±120 −34.9±6.3 21.1±14.2 16.2±9.4 14.2±6.0 2.32 0.83
Control Hollow −30.20±6.0 767±152 −31.6±4.5 14.5±7.6 15.4±8.1 9.5±6.2 2.72 0.76

Drained Hummock −42.86±20.0 758±130 −114.4±14.6 29.2±1.4 13.6±7.4 15.7±6.8 2.88 0.76
Drained Hollow −24.37±21.6 871±636 −113.0±48.5 21.3±4.6 16.7±2.7 12.6±11.6 1.29 0.68
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Table 2. Regression Constants and Goodness of Fit (r2) for Total Respiration (Rtot) Model
(Eq. 2).

a b c SEE r2

(g CO2 m−2 d−1)

Control Hummock 0.51±0.80 −0.12±0.53 −6.66±18.71 0.22 0.82
Control Hollow 1.58±0.82 −0.38±0.61 −24.52±15.88 0.46 0.73

Drained Hummock 0.50±0.25 0.09±0.13 13.90±18.67 0.17 0.87
Drained Hollow 0.63±0.61 0.05±0.26 8.43±14.98 0.48 0.81
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Table 3. Aboveground, Belowground, Tree, and Total Site Biomass (g m−2)∗.

ABOVEGROUND BELOWGROUND TREES TOTAL
Mosses Vascular Lichens Total Fine (<2 mm) Coarse (>2 mm) Total (Site) (Site)

Control Hummocks 215±68A 218±84B 0±0A 433±147A 563±103 138±31 701±106A 2142 3304
Control Hollows 182±93A 135±41B 11±32A 328±72A 484±195 386±425 870±553A

Drained Hummocks 16±27B 737±60A 13±14A 766±323B 470±96 498±262 967±275A 1964 3676
Drained Hollows 80±130A 133±44B 358±354B 571±280 AB 491±60 626±392 1118±422A

∗ The total site biomass is calculated considering measured hummock coverage of 56 % and 52 % at control and drained sites, respectively. Values are mean±SE. Superscript letters
indicate statistically significant differences.
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Table 4. Growing Season CO2 Flux Estimates (g CO2 m−2) for 2011 and 2012.

2011 Site 2012 Site
GEP Rtot NEE NEE∗ GEP Rtot NEE NEE∗

Control Hummock −698±296 825±136 127 −6.9 −835±153 791±261 −44 71.7
Control Hollow −653±422 507±161 −146 −664±144 883±112 219

Drained Hummock −1025±257 1083±78 58 769.5 −1220±457 1315±235 95 734.5
Drained Hollow −426±236 1907±236 1481 −432±453 1806±611 1374

∗ NEE of the sites were calculated by considering measured hummock to hollow coverage of 56/44 % and 52/48 % at control and drained
sites.
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Fig. 1. Goodness of fit (r2) between (a) modeled and measured GEP and (b) modeled and
measured Rtot. Both 2011 and 2012 data from control and drained sites are presented. Lines
represent the 1 : 1 fit.
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Fig. 2. Water table levels (lines) and daily precipitation (bars) during growing seasons of 2011
and 2012. The cumulative seasonal precipitation during 2012 was 30 % less than that of 2011.
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Fig. 3. Relationship between drainage/microform scenario and ground layer above ground
biomass by category as a percentage of total.
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Fig. 4. GEPmax, Rtot and NEEmax at control and drained sites in 2011. The Rr measurements
were added in 2012. NEEmax (without trees) was calculated by subtracting Rr from NEEmax and
represents CO2 exchange of the ground layer vegetation and peat. Error bars indicate±one
standard deviation. Results are from two-way (drainage and microform) ANOVA performed
separately for each year. Differences were evaluated between study plots grouped according to
microform and drainage and are indicted by letters at each bar. Sites are significantly different
at p <0.05 if they have no letters in common (letters should be compared only within one CO2
component in one year).
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